
LR Parsing Example
Martha Kosa

You have seen several parsing techniques so far, ranging from the simple but inefficient
brute force algorithm to the efficient LL(1) parsing algorithm. Now you will practice
with another one: SLR(1) parsing. It is efficient like the LL(1) parsing algorithm, but it
produces a rightmost derivation of a valid string in reverse order instead of a leftmost
derivation. In addition to a stack and a parse table, it uses a DFA, where the input
alphabet for the DFA is the set of all possible grammar symbols, both terminals and
nonterminals. It performs shift and reduce operations.

Our example is the language {am+1bmcn | m, n  0}. It is the concatenation of the two

languages {am+1bm | m  0} and {cn | n  0}. For your convenience, this grammar
has been created for you.

Try It!
1. Open the grammar file amplus1bmcn.CFG.flap.
2. Select Input > Build SLR(1) Parse Table. You should see a window similar to

the following.

1. Fill in the values for the FIRST sets for each of the nonterminal symbols. If the
nonterminal symbol appears as the lefthand side of a lambda rule, lambda will be
in its first set. Do not type any commas! You can check your work as you go
along by clicking the Next button after you fill in a set. If you have already
practiced a lot with FIRST sets, you can click the Do Step button.

2. Fill in the values for the FOLLOW sets for each of the nonterminal symbols. Do
not type any commas! Don't forget about the $! You can check your work in the
same way as you did previously.

3. After your complete the FOLLOW sets, you will see the following dialog.

1. This gets you to start the DFA that will help build the SLR(1) parse table. Click
on the Yes button.

2. You should now see the following dialog.

1. Click on the first rule. Why? You should see the following.

Select the first entry in the mini dialog. Why?
1. You need to select three more rules, one at a time, and three more entries in the

corresponding mini dialogs. Which entries should you select, and why?
Remember that you are in the initial state of the DFA. Your dialog should look
similar to the following.

1. Click on the OK button.
2. Click on the Do Step button. Zoom and resize as necessary to see the complete

DFA. Your complete DFA should look similar to the following. What are the
relationships among the labels on the DFA states, the transitions, and the
production rules of the grammar? What is the significance of the final states?

1. Now we fill in the entries of the parse table. Notice that the rows of the parse
table correspond to states in the DFA and the columns correspond to symbols in
the grammar and the special end of input symbol $. We start with row 0,
corresponding to the initial state. We look at the transitions coming out of that
state and use the label on the transition as the column. The destination state of the
transition will be placed in the table entry at the corresponding row and column.
If the label is a terminal symbol, we will shift (denoted by s) before going to the
destination state. The table entry will contain s followed by the destination state.
How many entries do you need to complete in row 0? Why? You can click the
Next button to check your work.

2. Complete the entries in row 1. Look carefully at the label on state 1. Where is
the dot, which signifies where we are in attempting to apply a production rule?
What kind of state is state 1? What column should we use? Why? We fill in the
entry in column $ of row 1. The label is S'  S . This means we have
completed work with our original start symbol. This means our string will be
accepted. Type acc in the entry.

3. Complete the entries in row 2. Look carefully at the label on state 2. It contains
Y  . This corresponds to a lambda rule. Since state 2 is not a final state, we
need to find a neighboring state with Y   in its label. This is state 5. We will
reduce (denoted by r) before going to the neighboring state. The table entry will
contain r followed by the destination state. How many entries do you need to
complete in row 2? Why? As before, you can click the Next button to check your
work.

4. Complete the entries in row 3. Look carefully at the label on state 3. It contains
X  a . This corresponds to the full application of a production rule. This
means that when we encounter any other terminal symbol (including $), we need
to reduce and remain in state 3. Type r3 in the applicable entries. As before, you
can click the Next button to check your work.

5. Complete the entries in the remaining rows. As usual, you can click the Next
button to check your work. Remember that the $ column will need to be used for
states that are final or contain labels corresponding to completed rules. You will
need to be careful when workin with states containing labels corresponding to
completed production rules. You will need to reduce and possibly move to

another state. Where will you move corresponds to a state with a label with the
lefthand side of the production rule followed by  because we are working our
way back toward the start symbol in a parse. When you finish, your parse table
should look like the following.

1. Use the table to parse the string aabcc. Enter aabcc in the input box and click the
Start button. Your window should look similar to the following (after possible
resizing).

1. Click the Step button until the string is successfully parsed. Observe what
entries in the table are consulted, what is done to the stack, and how the parse tree
is built. Note the actions described at the bottom of the window after each step.
What information is stored on the stack? How many trees are present at early
stages in the parse? How many trees are present at the end of the parse?

2. Choose Derivation Table in the combo box. Observe that the derivation
proceeds backward from the string to the start symbol and that reversing the
derivation results in the rightmost nonterminal symbol being expanded at each
step.

Now let's see what happens when we attempt to parse an invalid string. In any valid
string, the a's occur before the b's, and the b's occur before the c's, and the number of a's
is exactly one more than the number of b's. What happens if we have too many b's?

Try It!
1. If it is not already open, open the file amplus1bmcn.CFG.flap.
2. If the SLR(1) parse table is not already built, build it as before. You can click the

Do All! button and then the Parse button to save time.
3. Enter the string aabbcc in the input box, and then click the Start button.
4. Click the Step button until the string is rejected. Observe what entries in the table

are consulted, what is done to the stack, and how the parse tree is built. Note the
actions described at the bottom of the window after each step. How many times
did you click the Step button? Why can't the parse continue?

The parser stops when the first error is detected. For more practice, attempt to parse
some other invalid strings, such as strings with too many a's or strings where the a's, b's,
and c's are not in the proper order.

